测量机通常都在已知、定义的环境中工作。此时测量机的性能很大程度上由所使用的光栅尺的信号质量和精度决定。
测量室为精密测量提供了优良的环境,但也带来了一系列问题:高昂的设施、设备和维持恒温的成本以及“被中断的生产流程”。后者是zui为使用者头痛的一个缺点。
随着“尽可能在批量生产过程中控制生产流程”的大趋势,测量机离实际生产位置的距离也越来越近。这也被称为:车间级测量或在线测量。测量的结果可以实时影响生产流程的控制,从而实现优化的生产工序规划。很高的经济性和时间的节省是推动这一趋势的主要原因。
已知要求的进一步扩展
恶劣的生产环境给测量机提出了在严密保护的测量室中不存在或不重要的新要求。测量机在生产车间中需要面对变化的温度和更严酷的环境条件。振动和污染也是常见的挑战。测量机的生产厂家采用了不同的解决方案。但在一点上,所有厂家的意见是统一的:任何相对于DIN 102标准中确定的参考温度20 ℃温度误差都会导致测量机和被测工件的长度和角度变化。这些变化必须被折算回参考温度。而测量设备(光栅尺、编码器)的可定义的、高重复性的热性能是进行折算的必要条件。这意味着,测量机所配备的测量设备有着特别的重要性。未来的坐标测量机标准(ISO TC213-WG10)为此将更为重视测量设备的膨胀系数及其允许的误差范围。
温度变化所导致的膨胀 = 无法预知的长度变化?
作为测量机的测量基准,光栅尺的膨胀系数及其误差起着重要的影响。制造光栅尺的材料通常为:钢、玻璃或玻璃陶瓷。这些材料的膨胀系数可在资料中查阅。但是,不同的资料所给出的数值却相差很大。
要作为膨胀误差补偿计算的基础,这些数据的用处非常有限。如下面针对“钢”所作的例子所示,当计算所采用的膨胀系数不准确时,仅仅几度的温度变化就会造成数微米的测量误差。
确定膨胀系数α的可能方法
为了获得膨胀系数的数值,可以使用“膨胀计”。用这样的设备可以通过测量材料样品来地确定光栅尺材料的真实膨胀系数。位于布仑瑞克的联邦物理研究所设计的用于测量棒状材料的“α测试台”就是这类设备的代表。
这样获得的热膨胀系数可以作为真实值用于测量机的长度补偿计算。但在更多的情况下,人们还是采用了资料中查到的,或是由生产商提供的数据。这样一来,补偿的不确定性从一开始就已经不可避免了。
温度和精度补偿
车间型测量机的结构设计非常重要。生产厂家多年的经验确保了测量机的高可靠性和在生产现场恶劣环境下的高精度。即使和测量室内的测量机对比,在测量精度的要求上也不能打折扣。热变形的因素要通过掌握相应的信息、正确的材料选择和尽量满足热力学条件来应对。由于不同的原材料在温度变化时的膨胀程度不一样,而且达到新温度的速度也不同,所需的温度和精度补偿都相当复杂。对于补偿计算而言,zui重要的就是要拥有已知的出发点:所使用的光栅尺。